organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Formyl-*r*-2,*c*-6-bis(4-methoxyphenyl)*c*-3,*t*-3-dimethylpiperidin-4-one

T. Kavitha,^a S. Ponnuswamy,^b P. Sakthivel,^b K. Karthik^b and M. N. Ponnuswamy^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, Tamilnadu, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 13 March 2009; accepted 18 March 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.049; wR factor = 0.142; data-to-parameter ratio = 25.6.

In the title compound, $C_{22}H_{25}NO_4$, the piperidine ring adopts a distorted boat conformation. The two benzene rings are approximately perpendicular to each other, making a dihedral angle of 86.2 (8)°. The crystal packing is stabilized by C– H···O and C–H··· π interactions.

Related literature

For details of hydrogen-bond motifs, see: Bernstein *et al.* (1995). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

a = 11.7274 (3) Å

b = 18.8556 (4) Å c = 9.7178 (3) Å

Experimental

Crystal data	
C22H25NO4	
$M_r = 367.43$	
Monoclinic, $P2_1/c$	

$\beta = 113.507 \ (1)^{\circ}$
$V = 1970.54 (9) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker Kappa APEXII
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\rm min} = 0.979, T_{\rm max} = 0.983$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 244 parameters $wR(F^2) = 0.142$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.23$ e Å⁻³6250 reflections $\Delta \rho_{min} = -0.19$ e Å⁻³

 $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.031$

 $0.25 \times 0.20 \times 0.20$ mm

26804 measured reflections

6250 independent reflections 4080 reflections with $I > 2\sigma(I)$

Table 1	
Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5A\cdots O3^{i}$	0.97	2.44	3.3446 (16)	155
$C6-H6\cdots O2^{ii}$	0.98	2.41	3.3708 (16)	168
C18−H18···O1 ⁱⁱⁱ	0.93	2.53	3.3018 (17)	140
$C10-H10\cdots Cg1^{iv}$	0.93	2.90	3.6627 (17)	140

Symmetry codes: (i) x, y, z - 1; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y, -z + 2. Cg(1) is the centroid of the C16–C21 ring.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* and *PARST* (Nardelli, 1983).

TK thanks Dr Babu Varghese, SAIF, IIT–Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2903).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2009). E65, 0856 [doi:10.1107/S1600536809010010]

1-Formyl-r-2,c-6-bis(4-methoxyphenyl)-c-3,t-3-dimethylpiperidin-4-one

T. Kavitha, S. Ponnuswamy, P. Sakthivel, K. Karthik and M. N. Ponnuswamy

Comment

Piperidine, a basic component of the piper alkaloid piper nigrum is a monocyclic cyclohexane with a hetero atom affixed in the first position. The skeletal ring of piperidine is contained in the molecules of many synthetic and natural medicaments. A significant industrial application of piperidine is for the production of dipiperidinyl dithiuram tetrasulfide, which can be used as a rubber vulcanization accelerator.

The piperidine ring adopts distorted boat conformation with puckering parameters (Cremer & Pople, 1975) q2 = 0.630 (1) Å, q3 =0.070 (1)Å and φ 2= 87.2 (1)° and the asymmetry parameters Δ C₂(N1) and Δ C₂(C4) = 14.78 (12)Å (Nardelli, 1983). The angles between the best plane of the piperidine ring (N1,C3,C4,C6) and the phenyl rings (C8—C13 and C16—C21) are 84.17 (7)° and 80.70 (7)°, respectively. The two phenyl rings are approximately perpendicular to each other as can be seen from the dihedral angle of 86.23 (8)°. The methyl substituents C14 and C15 are oriented equatorially [N1—C2—C3—C14 =] -178.88 (11)° and axially [N1—C2—C3—C15 =] -59.52 (13) ° with respect to the piperidine ring. The sum of the bond angles around N1 atom (359.3°) indicates *sp*² hybridization.

The packing of the molecules is controlled by C—H···O types of intermolecular interactions. The symmetry related molecules form a dimer with the graph-set motif of $R^2_2(16)$ (Bernstein *et al.*, 1995) through hydrogen bonds. Further a C—H··· π interaction also leads to the formation of a dimer [C10—H10 = 0.9301 Å, H10···Cg(1) = 2.9035 Å, C10···Cg(1) = 3.6627 (17) Å and C10—H10···Cg(1) = 139.71°, where Cg(1) is the centroid of the ring (C16—C21) at (1 - x,-y,2 - z)].

Experimental

The ice-cold solution of acetic-formic anhydride was prepared from acetic anhydride (10 ml) and 85% formic acid (5 ml) and was added slowly to a cold solution of *r*-2, *c*-6-*bis*(4-methoxyphenyl)-*c*-3,*t*-3-dimethylpiperidine-4-one (1.69 g) in benzene (30 ml). The reaction mixture was stirred at room temperature for 5 hrs. The organic layer was separated, dried over anhydrous Na₂SO₄ and concentrated. The resulting mass was purified by crystallization from benzene-petroleum ether (333–353 K) in the ratio 1:1.

Refinement

H atoms were positioned geometrically (C—H=0.93–0.96 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H, $1.2U_{eq}(C)$ for other H atoms.

Figures

Fig. 1. *ORTEP* plot of the molecule showing that the thermal ellipsoids are drawn at 30% probability level. H atoms have been omitted for clarity.

Fig. 2. The molecular packing of the compound viewed down the *b* axis is shown. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

1-Formyl-r-2,c-6-bis(4-methoxyphenyl)-c-3,t-3-dimethylpiperidin-4-one

Crystal data	
C ₂₂ H ₂₅ NO ₄	$F_{000} = 784$
$M_r = 367.43$	$D_{\rm x} = 1.239 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6250 reflections
<i>a</i> = 11.7274 (3) Å	$\theta = 2.2 - 31.0^{\circ}$
b = 18.8556 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 9.7178 (3) Å	T = 293 K
$\beta = 113.5070 \ (10)^{\circ}$	Block, colourless
$V = 1970.54 (9) \text{ Å}^3$	$0.25 \times 0.20 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Bruker Kappa APEXII diffractometer	6250 independent reflections
Radiation source: fine-focus sealed tube	4080 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.031$
T = 293 K	$\theta_{\text{max}} = 31.0^{\circ}$
ω and ϕ scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -16 \rightarrow 16$
$T_{\min} = 0.979, \ T_{\max} = 0.983$	$k = -27 \rightarrow 26$
26804 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.142$	$w = 1/[\sigma^2(F_o^2) + (0.0615P)^2 + 0.3342P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
6250 reflections	$\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$
244 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C2	0.17408 (11)	0.62041 (6)	0.40308 (14)	0.0338 (3)
H2	0.1120	0.6538	0.4087	0.041*
C3	0.10682 (11)	0.57637 (7)	0.25999 (14)	0.0381 (3)
C4	0.19953 (12)	0.53109 (7)	0.22723 (13)	0.0363 (3)
C5	0.33023 (12)	0.55897 (7)	0.27795 (15)	0.0366 (3)
H5A	0.3623	0.5459	0.2036	0.044*
H5B	0.3812	0.5353	0.3709	0.044*
C6	0.34585 (11)	0.63892 (6)	0.30324 (13)	0.0323 (2)
H6	0.3138	0.6621	0.2048	0.039*
C7	0.28230 (12)	0.73249 (7)	0.42790 (15)	0.0398 (3)
H7	0.3400	0.7599	0.4081	0.048*
C8	0.22360 (11)	0.58092 (7)	0.55153 (14)	0.0352 (3)
С9	0.26574 (13)	0.51168 (7)	0.57097 (15)	0.0429 (3)
H9	0.2638	0.4863	0.4880	0.052*
C10	0.31075 (14)	0.47894 (8)	0.70986 (16)	0.0446 (3)
H10	0.3396	0.4325	0.7196	0.054*
C11	0.31275 (14)	0.51526 (8)	0.83330 (15)	0.0446 (3)
C12	0.26964 (16)	0.58424 (8)	0.81650 (17)	0.0530 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H12	0.2700	0.6092	0.8993	0.064*
C13	0.22628 (14)	0.61613 (8)	0.67819 (16)	0.0462 (3)
H13	0.1979	0.6627	0.6690	0.055*
C14	0.00369 (14)	0.53174 (9)	0.2744 (2)	0.0553 (4)
H14A	-0.0532	0.5621	0.2953	0.083*
H14B	0.0393	0.4983	0.3548	0.083*
H14C	-0.0400	0.5067	0.1822	0.083*
C15	0.04780 (14)	0.62642 (8)	0.12465 (17)	0.0513 (4)
H15A	-0.0123	0.6563	0.1401	0.077*
H15B	0.0076	0.5989	0.0351	0.077*
H15C	0.1114	0.6553	0.1143	0.077*
C16	0.48138 (11)	0.65875 (6)	0.38343 (14)	0.0332 (3)
C17	0.55115 (11)	0.63584 (7)	0.52784 (14)	0.0368 (3)
H17	0.5134	0.6082	0.5770	0.044*
C18	0.67579 (12)	0.65292 (7)	0.60132 (16)	0.0418 (3)
H18	0.7212	0.6366	0.6982	0.050*
C19	0.73163 (13)	0.69426 (8)	0.52933 (19)	0.0511 (4)
C20	0.66322 (15)	0.71813 (10)	0.3859 (2)	0.0623 (5)
H20	0.7008	0.7464	0.3375	0.075*
C21	0.53942 (14)	0.70045 (8)	0.31376 (17)	0.0488 (4)
H21	0.4943	0.7168	0.2168	0.059*
C22	0.3775 (2)	0.41457 (10)	0.9928 (2)	0.0736 (5)
H22A	0.4042	0.4023	1.0969	0.110*
H22B	0.4416	0.4027	0.9590	0.110*
H22C	0.3032	0.3887	0.9349	0.110*
C23	0.92890 (16)	0.68961 (11)	0.7357 (3)	0.0787 (6)
H23A	1.0117	0.7079	0.7651	0.118*
H23B	0.9311	0.6387	0.7350	0.118*
H23C	0.8951	0.7053	0.8056	0.118*
N1	0.27207 (9)	0.66443 (5)	0.38626 (11)	0.0321 (2)
O1	0.17227 (10)	0.47451 (5)	0.16419 (12)	0.0515 (3)
O2	0.22263 (10)	0.76191 (5)	0.48956 (13)	0.0524 (3)
O3	0.35310 (13)	0.48797 (6)	0.97457 (12)	0.0646 (3)
O4	0.85343 (11)	0.71456 (8)	0.59033 (17)	0.0816 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0292 (5)	0.0337 (6)	0.0364 (6)	-0.0019 (5)	0.0109 (5)	-0.0052 (5)
C3	0.0320 (6)	0.0379 (6)	0.0374 (7)	-0.0076 (5)	0.0065 (5)	-0.0049 (5)
C4	0.0435 (7)	0.0340 (6)	0.0260 (6)	-0.0071 (5)	0.0080 (5)	-0.0030 (5)
C5	0.0382 (6)	0.0353 (6)	0.0354 (6)	-0.0023 (5)	0.0137 (5)	-0.0077 (5)
C6	0.0317 (6)	0.0327 (6)	0.0288 (6)	-0.0019 (5)	0.0081 (5)	-0.0006 (4)
C7	0.0364 (6)	0.0301 (6)	0.0448 (7)	-0.0007 (5)	0.0076 (6)	-0.0040 (5)
C8	0.0340 (6)	0.0369 (6)	0.0361 (6)	-0.0041 (5)	0.0155 (5)	-0.0055 (5)
C9	0.0548 (8)	0.0413 (7)	0.0374 (7)	0.0031 (6)	0.0234 (6)	-0.0050 (5)
C10	0.0556 (8)	0.0411 (7)	0.0425 (7)	0.0052 (6)	0.0252 (7)	0.0025 (6)
C11	0.0527 (8)	0.0492 (8)	0.0360 (7)	-0.0079 (6)	0.0220 (6)	-0.0009 (6)

C12	0.0787 (11)	0.0465 (8)	0.0418 (8)	-0.0045 (7)	0.0323 (8)	-0.0108 (6)
C13	0.0609 (9)	0.0382 (7)	0.0454 (8)	-0.0004 (6)	0.0275 (7)	-0.0072 (6)
C14	0.0413 (8)	0.0585 (9)	0.0620 (10)	-0.0193 (7)	0.0162 (7)	-0.0103 (8)
C15	0.0406 (7)	0.0506 (8)	0.0431 (8)	-0.0029 (6)	-0.0039 (6)	-0.0003 (6)
C16	0.0305 (5)	0.0305 (6)	0.0351 (6)	-0.0017 (4)	0.0094 (5)	0.0001 (5)
C17	0.0337 (6)	0.0379 (6)	0.0359 (6)	-0.0024 (5)	0.0108 (5)	0.0017 (5)
C18	0.0347 (6)	0.0400 (7)	0.0406 (7)	0.0003 (5)	0.0042 (5)	-0.0002 (5)
C19	0.0328 (7)	0.0457 (8)	0.0640 (10)	-0.0071 (6)	0.0081 (7)	0.0027 (7)
C20	0.0453 (8)	0.0647 (10)	0.0719 (11)	-0.0151 (7)	0.0182 (8)	0.0234 (9)
C21	0.0437 (8)	0.0492 (8)	0.0470 (8)	-0.0054 (6)	0.0113 (6)	0.0152 (6)
C22	0.1037 (15)	0.0640 (11)	0.0502 (10)	0.0027 (10)	0.0277 (10)	0.0144 (8)
C23	0.0342 (8)	0.0782 (13)	0.0957 (15)	-0.0048 (8)	-0.0036 (9)	0.0030 (11)
N1	0.0293 (5)	0.0279 (5)	0.0341 (5)	-0.0019 (4)	0.0076 (4)	-0.0031 (4)
O1	0.0621 (6)	0.0396 (5)	0.0481 (6)	-0.0136 (5)	0.0169 (5)	-0.0155 (4)
O2	0.0531 (6)	0.0367 (5)	0.0643 (7)	0.0024 (4)	0.0204 (5)	-0.0136 (5)
O3	0.1002 (9)	0.0585 (7)	0.0396 (6)	0.0004 (6)	0.0326 (6)	0.0052 (5)
O4	0.0371 (6)	0.0867 (9)	0.0976 (10)	-0.0224 (6)	0.0023 (6)	0.0220 (8)

Geometric parameters (Å, °)

H13 H14A H14B H14C	0.9300 0.9600 0.9600
H14A H14B H14C	0.9600 0.9600
H14B H14C	0.9600
H14C	
	0.9600
H15A	0.9600
H15B	0.9600
H15C	0.9600
C21	1.3811 (18)
C17	1.3818 (17)
C18	1.3847 (18)
H17	0.9300
C19	1.375 (2)
H18	0.9300
O4	1.3648 (17)
C20	1.377 (2)
C21	1.378 (2)
H20	0.9300
H21	0.9300
O3	1.410 (2)
H22A	0.9600
H22B	0.9600
H22C	0.9600
O4	1.415 (2)
H23A	0.9600
H23B	0.9600
H23C	0.9600
14 114	109.5
14—н14А	
	H21 O3 H22A H22B H22C O4 H23A H23B H23C 14—H14A

C8—C2—C3	117.24 (10)	H14A—C14—H14B	109.5
N1—C2—H2	105.8	C3—C14—H14C	109.5
С8—С2—Н2	105.8	H14A—C14—H14C	109.5
С3—С2—Н2	105.8	H14B-C14-H14C	109.5
C4—C3—C14	111.76 (11)	C3—C15—H15A	109.5
C4—C3—C2	110.01 (10)	C3—C15—H15B	109.5
C14—C3—C2	110.73 (11)	H15A—C15—H15B	109.5
C4—C3—C15	106.37 (11)	C3—C15—H15C	109.5
C14—C3—C15	108.28 (12)	H15A—C15—H15C	109.5
C2—C3—C15	109.55 (11)	H15B-C15-H15C	109.5
O1—C4—C5	120.22 (12)	C21—C16—C17	117.89 (12)
O1—C4—C3	122.55 (12)	C21—C16—C6	120.70 (11)
C5—C4—C3	117.22 (10)	C17—C16—C6	121.41 (11)
C4—C5—C6	116.02 (11)	C16—C17—C18	121.78 (12)
С4—С5—Н5А	108.3	С16—С17—Н17	119.1
С6—С5—Н5А	108.3	С18—С17—Н17	119.1
C4—C5—H5B	108.3	C19—C18—C17	119.24 (13)
C6—C5—H5B	108.3	С19—С18—Н18	120.4
H5A—C5—H5B	107.4	С17—С18—Н18	120.4
N1—C6—C16	111.21 (9)	O4—C19—C18	124.49 (15)
N1—C6—C5	110.49 (10)	O4—C19—C20	115.74 (14)
C16—C6—C5	111.18 (10)	C18—C19—C20	119.77 (13)
N1—C6—H6	107.9	C19—C20—C21	120.42 (14)
С16—С6—Н6	107.9	С19—С20—Н20	119.8
С5—С6—Н6	107.9	C21—C20—H20	119.8
O2—C7—N1	125.80(13)	C20—C21—C16	120.90 (14)
О2—С7—Н7	117.1	C20—C21—H21	119.6
N1—C7—H7	117.1	C16—C21—H21	119.6
C9—C8—C13	116.76 (12)	O3—C22—H22A	109.5
C9—C8—C2	125.00 (11)	O3—C22—H22B	109.5
C13—C8—C2	118.23 (12)	H22A—C22—H22B	109.5
C8—C9—C10	122.10(12)	03—C22—H22C	109.5
С8—С9—Н9	118.9	H22A—C22—H22C	109.5
C10—C9—H9	118.9	H22B—C22—H22C	109.5
C11-C10-C9	119.78 (13)	04—C23—H23A	109.5
C11—C10—H10	120.1	04—C23—H23B	109.5
C9—C10—H10	120.1	$H_{23}A = C_{23} = H_{23}B$	109.5
03 - C11 - C10	124 75 (14)	$04-C^{2}-H^{2}C$	109.5
03 - C11 - C12	116.01 (12)	$H_{23}A - C_{23} - H_{23}C$	109.5
C10-C11-C12	119 23 (13)	$H_{23B} = C_{23} = H_{23C}$	109.5
C_{13} C_{12} C_{11}	120 24 (13)	C7 - N1 - C2	119.04 (10)
C13 - C12 - H12	119.9	C7 - N1 - C6	119.07(10) 118.42(10)
C11 - C12 - H12	119.9	C_{2} N1 C_{6}	121 82 (9)
C12 - C13 - C8	121.86 (13)	$C_{11} = 0^{3} = C_{22}^{22}$	121.02(9) 117.96(12)
C12—C13—H13	119.1	C19 - 04 - C23	118 02 (14)
C8-C13-H13	119.1	01 023	110.02 (17)
N1 C2 C2 C4	57.00 (12)	C^{2} C^{8} C^{12} C^{12}	170.09 (12)
N1 - C2 - C3 - C4	57.08 (13) 71.28 (12)	12 - 13 - 12	-1/9.98 (13)
$C_{8} - C_{2} - C_{3} - C_{4}$	-/1.28 (13)	NI-C6-C16-C21	-120.55 (13)
N1—C2—C3—C14	-1/8.88 (11)	C5—C6—C16—C21	115.87 (14)

52.76 (15) -59.52 (13) 172 12 (11)	N1—C6—C16—C17 C5—C6—C16—C17	59.60 (15) -63.98 (15)
-59.52 (13) 172 12 (11)	C5—C6—C16—C17	-63.98 (15)
172 12 (11)		. ,
1/2.12(11)	C21—C16—C17—C18	-0.8 (2)
26.68 (18)	C6-C16-C17-C18	179.06 (12)
150.13 (12)	C16—C17—C18—C19	0.5 (2)
-91.31 (15)	C17—C18—C19—O4	179.89 (15)
-152.76 (12)	C17—C18—C19—C20	0.1 (2)
-29.32 (15)	O4—C19—C20—C21	179.76 (17)
89.25 (13)	C18-C19-C20-C21	-0.4 (3)
158.68 (12)	C19—C20—C21—C16	0.2 (3)
-21.86 (16)	C17—C16—C21—C20	0.4 (2)
44.33 (14)	C6-C16-C21-C20	-179.41 (15)
168.32 (10)	O2—C7—N1—C2	5.3 (2)
-96.55 (14)	O2—C7—N1—C6	175.84 (12)
31.31 (17)	C8—C2—N1—C7	-93.80 (13)
84.08 (14)	C3—C2—N1—C7	134.58 (12)
-148.07 (12)	C8—C2—N1—C6	96.04 (12)
-1.2 (2)	C3—C2—N1—C6	-35.59 (14)
179.46 (13)	C16—C6—N1—C7	51.11 (14)
0.9 (2)	C5-C6-N1-C7	175.08 (11)
178.92 (14)	C16—C6—N1—C2	-138.67 (11)
-0.1 (2)	C5-C6-N1-C2	-14.70 (15)
-179.56 (15)	C10-C11-O3-C22	-9.8 (2)
-0.5 (2)	C12—C11—O3—C22	169.20 (16)
0.2 (2)	C18—C19—O4—C23	2.2 (3)
0.6 (2)	C20-C19-O4-C23	-178.04 (18)
	26.68 (18) $150.13 (12)$ $-91.31 (15)$ $-152.76 (12)$ $-29.32 (15)$ $89.25 (13)$ $158.68 (12)$ $-21.86 (16)$ $44.33 (14)$ $168.32 (10)$ $-96.55 (14)$ $31.31 (17)$ $84.08 (14)$ $-148.07 (12)$ $-1.2 (2)$ $179.46 (13)$ $0.9 (2)$ $178.92 (14)$ $-0.1 (2)$ $-179.56 (15)$ $-0.5 (2)$ $0.2 (2)$ $0.6 (2)$	172.12 (11) $C21-C10-C17-C18$ 26.68 (18) $C6-C16-C17-C18$ 150.13 (12) $C16-C17-C18-C19$ -91.31 (15) $C17-C18-C19-O4$ -152.76 (12) $C17-C18-C19-C20$ -29.32 (15) $O4-C19-C20-C21$ 89.25 (13) $C18-C19-C20-C21$ 158.68 (12) $C19-C20-C21-C16$ -21.86 (16) $C17-C16-C21-C20$ 44.33 (14) $C6-C16-C21-C20$ 168.32 (10) $O2-C7-N1-C2$ -96.55 (14) $O2-C7-N1-C6$ 31.31 (17) $C8-C2-N1-C7$ 84.08 (14) $C3-C2-N1-C6$ -1.2 (2) $C3-C2-N1-C6$ 179.46 (13) $C16-C6-N1-C7$ 0.9 (2) $C5-C6-N1-C7$ 178.92 (14) $C16-C6-N1-C2$ -0.1 (2) $C5-C6-N1-C2$ -179.56 (15) $C10-C11-O3-C22$ -0.5 (2) $C12-C11-O3-C22$ 0.2 (2) $C18-C19-O4-C23$ 0.6 (2) $C20-C19-O4-C23$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —H	$H \cdots A$	$D \cdots A$	D—H···· A
C5—H5A····O3 ⁱ	0.97	2.44	3.3446 (16)	155
C6—H6···O2 ⁱⁱ	0.98	2.41	3.3708 (16)	168
C18—H18····O1 ⁱⁱⁱ	0.93	2.53	3.3018 (17)	140
C10—H10···Cg1 ^{iv}	0.93	2.90	3.6627 (17)	140
$\mathbf{C}_{\mathbf{i}} = \mathbf{C}_{\mathbf{i}} = $	1/2. (:::)	1 = 1.6		

Symmetry codes: (i) x, y, z-1; (ii) x, -y+3/2, z-1/2; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+2.

Fig. 2